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Abstract
A calculation of the effective electron barrier potential in quantum-wire superlattices subject to
magnetic-field and strain effects is presented. It is shown that, besides the lateral-confinement
contributions to the barrier potential emphasized by the authors in earlier work (Lew Yan Voon
and Willatzen 2003 J. Appl. Phys. 93 9997; Lew Yan Voon et al 2004 J. Appl. Phys. 96 4660),
strong contributions from strain (lattice mismatch) may be present as well. This is due to the
fact that strain values can be several percent in heterostructures while electron deformation
potentials are of the order of 10 eV. It is also shown that Landau and Landé magnetic-field
contributions become important at magnetic fields of 10 T or higher. The driving force behind
the lateral-confinement and the Landau magnetic-field contributions is the same, namely, the
electron effective-mass difference in the two material constituents forming the superlattice
structure; however, the dependences of the two contributions on lateral dimensions are inverse
squared and squared, respectively. Similarly, the driving force behind the Landé magnetic-field
contribution, being independent of lateral dimensions, is the difference in electron g factors
between the two material constituents. We note that, for InAs/GaAs nanowire superlattices, it is
possible to tune the effective barrier potential around 0 for cross-sectional dimensions of
5–6 nm by use of a magnetic field. Further, since the effective barrier potential is different for
spin-up and spin-down polarized electrons, magnetic-field tuning can be used to separate
spin-up and spin-down electrons in quantum-wire superlattices.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The spatial localization of the electronic states plays a
fundamental role in defining the properties of nanostructures.
For example, this determines the quantum-confinement energy
or the strength of the optical transitions in optoelectronic
devices. One of the earliest approaches to engineering
the electronic wavefunction was by designing quantum-well
structures [1]. Heterojunctions define which material is the
well and which one is the barrier. For an AlAs/GaAs
heterostructure, for example, GaAs (AlAs) is the well (barrier)
material.
1 Permanent address: Mads Clausen Institute, University of Southern
Denmark, Alsion 2, DK-6400 Sønderborg, Denmark.

In 2002, modulated nanowires were first synthesized by
four different groups [2–5]. One peculiar property predicted
by us in 2003 is that the lateral size of the nanostructures can
induce a transformational change in the electron localization
equivalent to a well-barrier inversion [6, 7]. This effect has
since been verified by another group [8]. The largest wire
diameter we obtained for unstrained systems when there is
an inversion for the conduction electrons is about 4 nm;
unfortunately, modulated nanowires that small have not yet
been made. This, therefore, raises the question as to how one
can obtain larger critical radii. In addition, it would be useful
if one could develop a solution that allows for tunability, with
potential device applications. The above reasons have led us
to explore the impact of strain and of a magnetic field on the
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electron localization properties of modulated semiconductor
nanowires. It should be noted that both strain [9] and magnetic
field [10] separately have been shown to lead to the possibility
of a type-I to type-II transition in quantum wells. However,
the magnetic case used a diluted magnetic semiconductor and
none of these other works had provided a detailed theoretical
analysis of the origin of the change in the electron localization.
In the following, we will first present the general theory for the
conduction electron in wide bandgap materials and then apply
it to a few cases. The goal is to see how one can increase
the critical size for inversion by the proper choice of material
system and external magnetic field.

2. Quantum-wire superlattice problem in the
presence of a magnetic field

Let us consider the case where the magnetic field is oriented
along the z axis, i.e. θ = 0. We shall further consider the
quantum-wire superlattice direction to be the z axis. Hence,
electrons are confined along the x and y axes assumed to
be within the intervals [0; Lx] and [0; L y], respectively. The
envelope-function Hamiltonian is, allowing for a z-dependent
effective mass:

H = p2
x

2me(z)
+ 1

2me(z)

(
py + eBx

)2 + 1

2
pz

1

me(z)
pz

+ Vconf(z)+ 1
2 g∗(z)μB B, (1)

where p = (px, py, pz), r = (x, y, z), e, me, Vconf, g∗, μB,
B and σ are the electron momentum, the electron position,
the absolute value of the electron charge, the electron effective
mass, the conduction band edge potential, the electron effective
Landé g factor, the Bohr magneton ( eh̄

2m0
), the magnetic

field and the Pauli spin matrices, respectively. Multiplying
equation (1) by me(z) and writing for the envelope function
(Hψ = Eψ)

ψ(x, y, z) = f (x, y)g(z), (2)

we find
me(z)

g(z)

[
1

2
pz

1

me(z)
pz + Vconf(z)± 1

2
g∗(z)μB B − E

]
g(z)

= − 1

f (x, y)

[
p2

x

2
+ 1

2

(
py + eBx

)2
]

f (x, y) ≡ λ2, (3)

where λ is a separation constant.
The second equality in equation (3) can be rewritten as

Hxy f (x, y) = (
Hxy,0 + Hxy,1

)
f (x, y) = λ2 f (x, y), (4)

Hxy,0 = h̄2

2

(
∂2

∂x2
+ ∂2

∂y2

)
, (5)

Hxy,1 = ih̄eBx
∂

∂y
− 1

2
e2 B2x2. (6)

We seek to investigate the effect of the magnetic field,
i.e. Hxy,1 using perturbation theory. This is possible if
dimensions Lx and L y as well as the magnetic-field strength
B are small since then the influence of Hxy,1 on eigenvalues is
small compared to the separation of unperturbed eigenvalues of

Hxy,0. Obviously, the first term in Hxy,1 does not contribute in
first-order perturbation theory, since (normalized) eigenstates
f0,mn of the unperturbed differential equation:

Hxy,0 f0,mn(x, y) = λ2
0,mn f0,mn(x, y), (7)

are
f0,mn(x, y) = f0x,m(x) f0y,n(y), (8)

f0x,m (x) =
√

2

Lx
sin

(
mπ

Lx
x

)
≡ |xm〉, (9)

f0y,n(y) =
√

2

L y
sin

(
nπ

L y
y

)
≡ |yn〉, (10)

with n,m integers, and

λ2
0,mn = − h̄2

2

[(
mπ

Lx

)2

+
(

nπ

L y

)2
]

. (11)

Hence, for the first term in Hxy,1, second-order perturbation
theory must be used. The second term in Hxy,1 does, however,
contribute in first-order perturbation theory.

The eigenvalue changes due to Hxy,1 now become

�λ2
mn = λ2

mn − λ2
0,mn = − 1

2 e2 B2〈xm|x2|xm〉

+ h̄2e2 B2
∑

(m′,n′) �=(m,n)

|〈xm|x |xm ′〉|2|〈yn| ∂
∂y |yn′〉|2

λ2
0,mn − λ2

0,m′n′
. (12)

Having obtained the separation constants λmn , we can solve for
the z-dependent part g(z) in equation (3):
(

− h̄2

2

∂

∂z

1

me(z)

∂

∂z
+ Vconf(z)± 1

2
g∗(z)μB B

− E − λ2
mn

me(z)

)
g(z) = 0. (13)

The effective potential barrier Vbarr can be immediately
read off from the latter equation as

Vbarr = Vconf,1 ± 1

2
g∗

1μB B − λ2
mn

me,1

−
(

Vconf,2 ± 1

2
g∗

2μB B − λ2
mn

me,2

)
, (14)

where suffices 1 and 2 on me, g∗, Vconf denote their values in
the material constituents 1 and 2 forming the quantum-wire
superlattice along the z direction, respectively. This expression
is interesting as it shows that the localization of the envelope
function along the z direction, determined essentially by the
effective potential barrier, depends on the lateral dimensions
Lx and L y of the quantum-wire superlattice (through the λ2

mn
term) and the magnetic-field strength B in addition to the well-
known barrier potential due to conduction band edge material
discontinuity. We shall soon address this effect in more detail.

The matrix elements appearing in equation (12) can be
readily calculated, obtaining for the λ2

mn change of the ground
state with suffices n = 1,m = 1:

�λ2
11 =

(
1

4π2
− 1

6

)
e2 B2L2

x + 8

3

642

92π6
e2 B2 L4

x

L2
x + L2

y

, (15)

2



J. Phys.: Condens. Matter 20 (2008) 345216 M Willatzen and L C Lew Yan Voon

keeping only the lowest contributing state (m ′, n′) = (2, 2)
in the second-order perturbation-term summation, which is
reasonable since we have assumed that unperturbed states
are well separated. Note that if all terms were included
in the second-order perturbation expansion of equation (12),
symmetry in the dependence of�λ2

mn on the Lx and L y lateral
dimensional values results since the magnetic field is applied
along the z axis. This symmetry is, due to our approximation
in keeping only the first term in the second-order perturbation
expansion, almost found for �λ2

11 in equation (15) since the
first-order perturbation-term coefficient 1

4π2 − 1
6 is −0.1413

while the second-order perturbation-term coefficient 8
3

642

92π6 is
+0.1402.

The ground-state barrier potential can now be written as
(combining equations (11), (12), (14) and (15))

Vbarr = Vconf,1 − Vconf,2 + h̄2

2

[(
π

Lx

)2

+
(
π

L y

)2
]

×
(

1

me,1
− 1

me,2

)
− �λ2

11

(
1

me,1
− 1

me,2

)

± 1
2

(
g∗

1 − g∗
2

)
μB B. (16)

3. Strain considerations

Many semiconductor heterostructures are strained and hence
contributions to the electron one-band equation from strain
must be accounted for. The strain contribution for electrons
in cubic crystals is

Hstrain = De
(
εxx + εyy + εzz

)
, (17)

where De is the electron deformation potential and εii are the
strain-tensor diagonal components. For pseudomorphic growth
along the z direction of a film on a substrate, the strain is
zero in the substrate but nonzero in the film layer. In fact,
the lattice-constant (a) mismatch between the film and the
substrate defined by

afilm − asubstrate

asubstrate
, (18)

leads to strain-tensor diagonal components in the film layer
equal to

εxx = εyy = −afilm − asubstrate

asubstrate
= ε‖, (19)

εzz = −2c12

c11
ε‖, (20)

where c12 and c11 are elastic-stiffness tensor components.
Thus, the strain contribution to the conduction band effective
Hamiltonian becomes

Hstrain = 2De

(
1 − c12

c11

)
ε‖. (21)

For typical semiconductors, the deformation potential is
approximately 10 eV and the lattice mismatch can be several

percent. Hence, the strain effect when it is present usually
is of immense importance for the effective barrier potential.
Adding Hstrain to the Hamiltonian in equation (1) and repeating
the steps that led to equation (14) now yields

Vbarr,strain = Vconf,1 ± 1

2
g∗

1μB B − λ2
mn

me,1

−
(

Vconf,2 ± 1

2
g∗

2μB B − λ2
mn

me,2

)

+ 2De,1

(
1 − c12,1

c11,1

)
ε‖,1 − 2De,2

(
1 − c12,2

c11,2

)
ε‖,2, (22)

where again comma-separated suffices 1 and 2 denote the
parameter values in the (two) material constituents 1 and 2
forming the quantum-wire superlattice, respectively.

For comparison, we also give the expressions for the
electron effective barrier potential Vbarr,strain in the cases
without strain contributions (V LTB

barr ), without strain and
magnetic-field contributions (V LT

barr), and the conduction band
edge discontinuity (V L

barr). These barrier potentials are given
by

V LTB
barr = Vconf,1 ± 1

2
g∗

1μB B − λ2
mn

me,1

−
(

Vconf,2 ± 1

2
g∗

2μB B − λ2
mn

me,2

)
, (23)

V LT
barr = Vconf,1 − λ2

mn,0

me,1
−

(

Vconf,2 − λ2
mn,0

me,2

)

, (24)

V L
barr = Vconf,1 − Vconf,2, (25)

where, in the superscripts, L corresponds to longitudinal, T to
transverse and B to magnetic confinement.

4. Results and discussions

In this section, we compute the electron effective barrier poten-
tial for some typical zinc-blende semiconductor quantum-wire
heterostructures. In table 1, material parameters used in the
calculations are given.

In figure 1, the electron effective potential Vbarr,strain

is shown as a function of the magnetic-field strength B
for a quantum-wire superlattice structure with AlAs as the
substrate and GaAs as the film layer. The lateral quantum-
wire dimensions are assumed to be Lx = L y = 20 nm,
which is typical of what is grown. The in-plane strain in
the GaAs film layer is equal to 0.14% and hence strain
contributes a small amount of approximately 10.6 meV to
the effective barrier potential. Notice that the magnetic-
field contribution to Vbarr,strain corresponds to approximately
−15 meV (−17.5 meV) at B = 20 T for spin-up and spin-
down polarized electrons, respectively. The strain contribution
can be seen to be only approximately 10 meV (the difference
between the dashed and circular curves at B = 0) for this
heterostructure. Note also that the strain contribution does
not depend on the lateral quantum-wire dimensions and hence
is of equal importance in quantum-well superlattices! For
the parameters chosen and up to a magnetic field of 20 T,
we see that there is no inversion in the spatial localization.

3
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Table 1. Material parameters taken from [12] except for electron g-factor values which are from [13]. We note that the g-factor value of AlAs
is found using a linear extrapolation to x = 1 based on data in figure 4 of [14]. The conduction band edge is Vconf = Eg − VBO. Thus, the
conduction band edge discontinuity �Ec between materials 1 and 2 is Vconf,1 − Vconf,2.

Eg (eV) VBO (eV) me
m0

g∗ c11 (GPa) c12 (GPa) a (Å) De (eV)

GaAs 1.519 −0.80 0.067 −0.445 1221 566 5.6523 −7.17
AlAs 3.009 −1.33 0.15 2.168 1250 534 5.6611 −5.64
InAs 0.417 −0.59 0.026 −17.5 833 453 6.0583 −5.08
InP 1.4236 −0.94 0.0795 1.48 1011 561 5.8697 −6.0
GaSb 0.812 −0.03 0.039 −9.1 884 403 6.0959 −7.5
InSb 0.235 0 0.0135 −51.3 685 374 6.4794 −6.94
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Figure 1. The electron effective potential Vbarr,strain for a
quantum-wire superlattice structure with AlAs as the substrate and
GaAs as the film layer. The six curves correspond to:
(1) Vbarr,strain—spin-up electron polarization (solid),
(2) Vbarr,strain—spin-down electron polarization (dashed),
(3) V LTB

barr —spin-up electron polarization (circle),
(4) V LTB

barr —spin-down electron polarization (square), (5) V LT
barr

(dashed–dotted) and (6) V L
barr (plus). Lateral quantum-wire

dimensions are assumed to be Lx = L y = 20 nm.

Nevertheless, each of the above changes to the effective barrier
is comparable to, for example, the excitonic energy and is,
therefore, not negligible.

In figure 2 (upper plot), Vbarr,strain is shown as a function
of B for a quantum-wire superlattice structure with GaAs as
the substrate and InAs as the film layer (similar geometrical
parameters as in the case above). Notice that the effective
electron potential decreases by 40 meV (60 meV) for spin-
up (spin-down) polarized electrons to a value of approximately
480 meV (460 meV) as the magnetic field increases from 0
to 20 T. The strain contribution is now very important and
amounts to −335 meV for this material combination. While
inversion is still not achieved, the corrections to the barrier
are now much larger than in the previous example. Indeed,
it is important to emphasize that forGaAs/InAs structures, for
example, it is possible to reduce the effective barrier potential
to nearly zero by stronger lateral confinement. By choosing
appropriately the lateral dimensions (for GaAs/InAs quantum-
wire superlattices the Lx and L y can be chosen equal to Lx =
L y = 5.65 nm), we can thus control the confinement of spin-up
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Figure 2. The electron effective potential Vbarr,strain for a
quantum-wire superlattice structure with GaAs as the substrate and
InAs as the film layer. Upper plot is for Lx = L y = 20 nm and lower
plot is for Lx = L y = 5.65 nm. Line codings are the same as in
figure 1.

and spin-down polarized electrons in either of the two material
layers (InAs or GaAs) in the quantum-wire superlattice (refer
to figure 2 (lower plot)). The present work shows clearly
that confinement of electrons in quantum-confined structures
depends strongly on the actual geometry (size) of the structure
besides, obviously, the material constituents. We anticipate
that a similar reversal of confinement is likely to take place

4
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Figure 3. The electron effective potential Vbarr,strain for a
quantum-wire superlattice structure with GaSb as the substrate and
InSb as the film layer. Geometrical parameters and line codings are
the same as in figure 1.

also in, for example, InAs/GaAs quantum-dot structures by
changing the geometrical parameters (such as the radius of
a spherical quantum dot or the radius/length of a cylindrical
quantum dot).

In figure 3, for an InSb film grown on a GaSb substrate,
it is shown that increasing the magnetic field to approximately
18.2 T (13.5 T) for spin-up (spin-down) polarized electrons
leads to a vanishing effective barrier potential. Moreover,
Vbarr,strain decreases from nearly 59 meV to −13 meV
(−69 meV) as the magnetic field increases to 20 T for
spin-up (spin-down) polarized electrons. The importance
of magnetic-field contributions to the effective potential
barrier for this quantum-wire semiconductor heterostructure is
thus significant. Moreover, strain contributes approximately
−397 meV to the effective barrier potential in this case.
Thus, a magnetic field, in practice, can be used to control
whether the effective potential is positive or negative in a
certain material layer of the quantum-wire heterostructure.
For example, tuning the magnetic field around the critical
value, 13.5 T, leads to confinement of spin-down electrons
either in the InAs layer (below 13.5 T) or the GaAs layers
(above 13.5 T). The precise value of the magnetic field is,
in a potential device application, determined by the lateral
dimensions since the lateral dimensions play an important
role for the effective barrier potential (refer to the previous
paragraph). Further, since the critical magnetic field for spin-
down polarized electrons in the present case is lower than
that for spin-up polarized electrons, it is in principle possible
by magnetic-field control to separate spin-up and spin-down
polarized electrons.

Finally, for the latter material system, we give a
calculation of the ground-state energy as a function of the
strain and magnetic field, with the same lateral dimensions as
before (figure 4). For concreteness, the problem is solved for
a single quantum-well structure with an InSb layer thickness
of 10 nm. Also, since the InSb/GaSb system has a given

10
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50
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E
 [m

eV
]

0

90

B [T]

2 4 6 8 10 120 14

Figure 4. Ground-state energy for a quantum-wire structure with
GaSb as the substrate and 10 nm InSb as the film layer. The effective
potential of spin-down polarized electrons (including the influence of
strain) becomes zero at a magnetic field of approximately 13 T.
Hence, we plot energy values up to 13 T. Geometrical parameters and
line codings are the same as in figure 1.

strain configuration, the calculation is only done for that
value and compared to a fictitious system with zero strain
in order to emphasize the role the strain plays. First, in
agreement with figure 3, an inversion of the spin-down state
is achieved near a magnetic field of 13 T; at that point,
a spin splitting of about 20 meV is achieved. Second,
the spin splitting for the unstrained system is considerably
less, reflecting the nonlinear character of the solutions. In
this case, both the phenomena of confinement inversion
and spin splitting are aided by the presence of strain and
magnetic field. For the influence of inverting the effective
potential barrier on nanowire superlattice wavefunctions and
localization discussions, we refer the reader to our previous
work [11].

5. Conclusions

An effective electron barrier potential analysis is carried out
for quantum-wire superlattice structures in the presence of a
magnetic field oriented along the quantum-wire superlattice
direction and lattice mismatch. It is shown, in the case
of InSb/GaSb quantum-wire structures, that magnetic-field
values equal to 10 T lead to changes in the effective barrier
potential of approximately 25 meV. This value increases
almost proportionally with the square of the lateral quantum-
wire dimensions and hence becomes important in laterally
weakly confined quantum-wire superlattices (or quantum-well
superlattices). Strain contributions to the effective electron
barrier potential are independent of the lateral dimensions
and hence equally important in quantum-well superlattice
structures. For InAs/GaAs and InSb/GaSb heterostructures,
the strain contribution is strong, amounting to 330 meV and
400 meV, respectively, and hence may force electrons to be
confined in the GaAs (GaSb) regions instead of the InAs

5



J. Phys.: Condens. Matter 20 (2008) 345216 M Willatzen and L C Lew Yan Voon

(InSb) regions where the conduction band edge potentials
are lower. A general conclusion of the present work is
that, in the case of a quantum-wire superlattice, the effective
electron barrier potential may have dominant contributions
from lateral confinement, strain and/or magnetic field. In
fact, we have shown that the combination of strain and
magnetic-field effects for the InSb/GaSb system can result in
confinement inversion for modulated nanowires with realistic
lateral dimensions. Moreover, the effective barrier potential
can be made spin-dependent by imposing an external magnetic
field on the system. As a case example, we demonstrate
that, for InAs/GaAs nanowire superlattices, it is possible to
tune the effective barrier potential to 0 for cross-sectional
dimensions of 5–6 nm by the use of a magnetic field. Finally,
since the effective barrier potential is different for spin-up and
spin-down polarized electrons, magnetic-field tuning can be
used to separate spin-up and spin-down electrons in quantum-
wire superlattices. This opens up potential applications in
spintronics.
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